• If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • Get control of your email attachments. Connect all your Gmail accounts and in less than 2 minutes, Dokkio will automatically organize your file attachments. You can also connect Dokkio to Drive, Dropbox, and Slack. Sign up for free.


US has 2000 times its energy needs - Geothermal

Page history last edited by Malcolm 9 years, 9 months ago


From: Earth Policy Institute
Published August 31, 2010 05:56 PM

Geothermal: Getting Energy from the Earth


"The heat in the upper six miles of the earth's crust contains 50,000 times as much energy as found in all the world's oil and gas reserves combined," says Lester R. Brown, President of the Earth Policy Institute, in a recent release, "Geothermal: Getting Energy from the Earth." "Despite this abundance, only 10,700 megawatts of geothermal electricity generating capacity have been harnessed worldwide."


Partly because of the dominance of the oil, gas, and coal industries, which have been providing cheap fuel by omitting the costs of climate change and air pollution from fuel prices, relatively little has been invested in developing the earth's geothermal heat resources. Over the last decade, geothermal energy has been growing at scarcely 3 percent a year.


Roughly half the world's existing generating capacity is in the United States and the Philippines. Indonesia, Mexico, Italy, and Japan account for most of the remainder. Altogether some 24 countries now convert geothermal energy into electricity. El Salvador, Iceland, and the Philippines respectively get 26, 25, and 18 percent of their electricity from geothermal power plants.


The potential of geothermal energy to provide electricity, to heat homes, and to supply process heat for industry is vast. Among the countries rich in geothermal energy are those bordering the Pacific in the so-called Ring of Fire, including Chile, Peru, Colombia, Mexico, the United States, Canada, Russia, China, Japan, the Philippines, Indonesia, and Australia. Other geothermally rich countries include those along the Great Rift Valley of Africa, such as Kenya and Ethiopia, and those around the Eastern Mediterranean.


An interdisciplinary team of 13 scientists and engineers assembled by the Massachusetts Institute of Technology (MIT) in 2006 assessed U.S. geothermal electrical generating potential. Drawing on the latest technologies, including those used by oil and gas companies in drilling and in enhanced oil recovery, the team estimated that enhanced geothermal systems could be used to massively develop geothermal energy. This technology involves drilling down to the hot rock layer, fracturing the rock and pumping water into the cracked rock, then extracting the superheated water to drive a steam turbine. The MIT team notes that with this technology the United States has enough geothermal energy to meet its energy needs 2,000 times over.


Even before this exciting new technology is widely deployed, investors are moving ahead with existing technologies. For many years, U.S. geothermal energy was confined largely to the Geysers project north of San Francisco, easily the world's largest geothermal generating complex, with 850 megawatts of generating capacity. Now the United States, which has more than 3,000 megawatts of geothermal generation, is experiencing a geothermal renaissance. Some 152 power plants under development in 13 states are expected to nearly triple U.S. geothermal generating capacity. With California, Nevada, Oregon, Idaho, and Utah leading the way, and with many new companies in the field, the stage is set for massive U.S. geothermal development.


Indonesia, richly endowed with geothermal energy, stole the spotlight in 2008 when it announced a plan to develop 6,900 megawatts of geothermal generating capacity. The Philippines is also planning a number of new projects.


Among the Great Rift countries in Africa—including Tanzania, Kenya, Uganda, Eritrea, Ethiopia, and Djibouti—Kenya is the early leader. It now has over 100 megawatts of geothermal generating capacity and is planning 1,200 more megawatts by 2015. This would nearly double its current electrical generating capacity of 1,300 megawatts from all sources.


Japan, which has a total of 535 megawatts of generating capacity, was an early leader in this field. Now, following nearly two decades of inactivity, this geothermally rich country—long known for its thousands of hot baths-is again beginning to build geothermal power plants.


In Europe, Germany has 5 small geothermal power plants in operation and some 150 plants in the pipeline. Werner Bussmann, head of the German Geothermal Association, says, "Geothermal sources could supply Germany's electricity needs 600 times over."


In the direct use of geothermal heat, Iceland and France are among the leaders. Iceland's use of geothermal energy to heat almost 90 percent of its homes has largely eliminated coal for this use. Geothermal energy accounts for more than one third of Iceland's total energy use. Following the two oil price hikes in the 1970s, some 70 geothermal heating facilities were constructed in France, providing both heat and hot water for an estimated 200,000 residences. Other countries that have extensive geothermally based district-heating systems include China, Japan, and Turkey.


Geothermal heat is ideal for greenhouses in northern countries. Russia, Hungary, Iceland, and the United States are among the many countries that use it to produce fresh vegetables in the winter. With rising oil prices boosting fresh produce transport costs, this practice will likely become far more common in the years ahead.


Among the 22 countries using geothermal energy for aquaculture are China, Israel, and the United States. In California, for example, 15 fish farms annually produce some 10 million pounds of tilapia, striped bass, and catfish using warm water from underground.


If the four most populous countries located on the Pacific Ring of Fire—the United States, Japan, China, and Indonesia—were to seriously invest in developing their geothermal resources, they could easily make this a leading world energy source. With a conservatively estimated potential in the United States and Japan alone of 240,000 megawatts of generation, it is easy to envisage a world with thousands of geothermal power plants generating some 200,000 megawatts of electricity by 2020. For direct use of geothermal heat, the 2020 Plan B goal is 500,000 thermal megawatts. All together, the geothermal potential is enormous.


For full report visit www.earthpolicy.org/index.php?/book_bytes/2010/pb4ch05_ss4.


Contact Info: Media & Permissions to Reprint Contact:
Reah Janise Kauffman
Tel: (202) 496-9290 x 12
E-mail: rjk (at) earthpolicy.org


Research Contact:
Janet Larsen
Tel: (202) 496-9290 x 14
E-mail: jlarsen (at) earthpolicy.org


Earth Policy Institute
1350 Connecticut Ave. NW, Suite 403
Washington, DC  20036
Web: www.earthpolicy.org


Website : Earth Policy Institute

Comments (1)

Malcolm said

at 5:27 pm on Oct 18, 2014

The world's biggest mistake is to neglect geothermal energy.

You don't have permission to comment on this page.